	[image: image1.png]
	Inclinometer API Demo

	
	SQInclV1.71

SignalQuest, Inc.

Serial Communications DLL

Version 1.71

2004-11-19

Reference Guide

Sample Code License and Disclaimer

Copyright © 2004 SignalQuest, Inc.

All software and related documentation is provided "AS IS" and without warranty or support of any kind and SignalQuest expressly disclaims all other warranties, express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Under no circumstances shall SignalQuest be liable for any incidental, special or consequential damages that result from the use or inability to use the software or related documentation, even if SignalQuest has been advised of the liability.

Unless otherwise stated, software written and copyrighted by SignalQuest is distributed as "freeware". You may use and modify this software without any charge or restriction. You may distribute to others, as long as the original author is acknowledged.

Table of Contents

5SQConfig

7SQFindFirstDevice

10SQOpenPort

12SQGetData2

16SQClosePort

17SQResetDevice

18SQGetErrorString

19SQClearLatchedError

20SQReadCTS

21SQReadDSR

22SQWriteRTS

23SQWriteDTR

24Known Issues

25Change History

27Error Codes

 Available DLL Function Calls

SQConfig

SQFindFirstDevice

SQOpenPort

SQGetData2

SQClosePort

SQResetDevice

SQGetErrorString

SQClearLatchedError

SQReadCTS

SQReadDSR

SQWriteRTS

SQWriteDTR

SQConfig

This function configures the DLL. SQConfig must be called once to pre-load the DLL into memory (INIT DLL) before any other DLL function calls are made. This function must then be called before calling SQGetData2 to switch it into the proper data acquisition mode. SQConfig can be called after calls to SQGetData2 to stop it’s internal data read thread if the user is done temporarily or permanently with it’s data operations, and then called again to set the mode for a new series of data acquisitions, and so on. It needs to be called only once before each series of calls to SQGetData2. See the section on SQGetData2 for more information on how these modes work.

LONG SQConfig (

LONG liMode,

LONG liBuffSize,

LONG liRS232Timeout,

LONG * pliRetVal1,

LONG * pliRetVal2);

The user must specify:

LONG liMode

The data synchronization can be set to the following modes:

MODE_INIT_DLL
 -1
// Initialize DLL

MODE_STOP

0
// Stop data acquisition

MODE_SYNC

1
// Set to synchronous mode

MODE_ASYNC_NO_EVENT
2
// Set to asynchronous mode (no event)

MODE_ASYNC_EVENT

3
// Set to event-driven async

MODE_DIG_IO_ON

4
// Turn on Digital I/O

MODE_DIG_IO_OFF

5
// Turn off Digital I/O

Example: to initialize the DLL set this parameter to -1, to get data in synchronous mode set this parameter to 1, to stop reading data set to 0, and so on.

LONG liBuffSize

Reserved for future use. Set to zero for now.

Example: Set to 0.

LONG liRS232Timeout

Timeout in milliseconds.

Example: Set to 75.

LONG * pliRetVal1

LONG * pliRetVal2

Return parameters: Usage depends on liMode. See SQGetData2 for more information on how these parameters are used. Must set to dummy LONG *’s if not used. Declare variables as LONG and then pass the address to the variable (for C++ &liRetVal1, for C# and VB pass by reference).

For MODE_ASYNC_EVENT:

pliRetVal1 returns the handle of the data is ready event.

For MODE_DIG_IO_ON:

pliRetVal1 returns the handle of the DSR event.

pliRetVal2 returns the handle of the CTS event.

Example use:

#define RS232_TIMEOUT

75

#define MODE_INIT_DLL

 -1

#define MODE_STOP

0

#define MODE_SYNC

1

#define MODE_ASYNC_NO_EVENT

2

#define MODE_ASYNC_EVENT

3

#define MODE_DIG_IO_ON

4

#define MODE_DIG_IO_OFF

5

LONG liMode;

LONG liBuffSize;

LONG liRS232Timeout;

LONG liRetVal1;

LONG liRetVal2;

LONG liResult;

// Initialize DLL

liMode = MODE_INIT_DLL;

liBuffSize = 0;

liRS232Timeout = RS232_TIMEOUT;

liRetVal1 = 0;

liRetVal2 = 0;

// Open COM port

liResult = SQConfig(

liMode,

liBuffSize,

liRS232Timeout,

&liRetVal1,

&liRetVal2);

The value returned by liResult for all DLL functions will be zero (0) for successful calls and will be less than zero if there is an error (negative). The error codes are defined at the end of this reference guide.

SQFindFirstDevice

This function polls the COM ports within a certain range and locates the first port within this range that is connected to a SignalQuest sensor device. Note the power, ground, and RX/TX leads must be correctly connected in order for this function to find the device. The function returns the COM port # (COM1 is 1, COM2 is 2, and so on) if successful and a negative value if not successful. This function may take some CPU time to process (no time for uninstalled COM ports, approx 1 second per installed COM port to determine if there is a valid SignalQuest sensor attached). If it appears to hang, it is only temporary.

If the user knows which COM port they have attached the device to then this function is not necessary to call. However, if the user wishes the program to automatically find the device, they can call this function either over the full range of the COM ports (1-256) or over a certain likely range (1-20 for example).

LONG SQFindFirstDevice(

LONG liStartCOM,

LONG liEndCOM,

LONG liBaudRate,

LPSTR lpszParity,

LONG liWordSize,

LONG liStopBits,

LONG liXonXoff,

LONG liRtsCts,

LONG liDtrDsr);

The user must specify:

liCOMPort

The COM port to connect to in an ASCII text string.

Example: 1 for “COM1” or 20 for “COM20”

liBaudRate

The baud rate.

Example: 115200 for 115,200 bits per second.

lpszParity

The parity.

Example: “NONE”

liWordSize

The word size.

Example: 8

liStopBits

The stop bits.

Example: 1

liXonXoff

The Xon/Xoff.

Example: off is 0

liRtsCts

The Rts/Cts.

Example: off is 0

liDtrDsr

The Dtr/Dsr..

Example: off is 0

liRS232Timeout

The RS-232 timeout value.

Example: i.e. 75 milliseconds

hWnd

The window handle to the user’s application.

Example: set to 0 if not used

uiMessageID

A pointer to the message ID for a notification message.

Example: if not used create a dummy UINT and pass the address

Example use:

LONG liResult;

LONG liBaudRate;

char szParity[5];

LONG liWordSize;

LONG liStopBits;

LONG liXonXoff;

LONG liRtsCts;

LONG liDtrDsr;

UINT uiMessageID;

liBaudRate = 115200;

sprintf(szParity, "NONE");

liWordSize = 8;

liStopBits = 1;

liXonXoff = 0;

liRtsCts = 0;

liDtrDsr = 0;

// Poll for devices from COM1 to COM20

liResult = SQFindFirstDevice(

1,

20,

liBaudRate,

szParity,

liWordSize,

liStopBits,

liXonXoff,

liRtsCts,

liDtrDsr,

RS232TIMEOUT,

this->GetSafeHwnd(),

&uiMessageID);

SQOpenPort

This function opens a connection to a specific serial COM port.

LONG SQOpenPort(

LONG liCOMPort,

LONG liBaudRate,

LPSTR lpszParity,

LONG liWordSize,

LONG liStopBits,

LONG liXonXoff,

LONG liRtsCts,

LONG liDtrDsr);

The user must specify:

liCOMPort

The COM port to connect to.

Example: to connect to COM1 send the integer 1

liBaudRate

The baud rate.

Example: 115200

lpszParity

The parity.

Example: “NONE”

liWordSize

The word size.

Example: 8

liStopBits

The stop bits.

Example: 1

liXonXoff

The Xon/Xoff.

Example: off is 0

liRtsCts

The Rts/Cts.

Example: off is 0

liDtrDsr

The Dtr/Dsr..

Example: off is 0

Example use:

#define RS232_TIMEOUT 75

LONG liCOMPort;

LONG liBaudRate;

char szParity[5];

LONG liWordSize;

LONG liStopBits;

LONG liXonXoff;

LONG liRtsCts;

LONG liDtrDsr;

LONG liResult;

sprintf(szParity, "COM3");

liBaudRate = 115200;

sprintf(szParity, "NONE");

liWordSize = 8;

liStopBits = 1;

liXonXoff = 0;

liRtsCts = 0;

liDtrDsr = 0;

// Open COM port

liResult = SQOpenPort(

liCOMPort,

liBaudRate,

szParity,

liWordSize,

liStopBits,

liXonXoff,

liRtsCts,

liDtrDsr);

SQGetData2

This function is the data acquisition routine. A call to this routine will return the next sensor reading or an error condition. Along with the floating point values of the quantities that the sensor measures (in this case pitch and roll) this routine returns the packet count, an error code if there was an error during this read operation, and the latched error condition. There must be a valid open connection to a specific serial COM port on the user’s computer.

There are several data acquisition synchronization modes available to the user.

#define MODE_INIT_DLL

 -1

#define MODE_STOP

0

#define MODE_SYNC

1

#define MODE_ASYNC_NO_EVENT

2

#define MODE_ASYNC_EVENT

3

#define MODE_DIG_IO_ON

4

#define MODE_DIG_IO_OFF

5

liResult = SQConfig(

SYNC,

0,

75,

&liRetVal1,

&liRetVal2);

MODE_SYNC mode:

By default the SQGetData2 function is in SYNC mode (1). If the user wishes to switch to a new mode, they will need to make a call to SQConfig before subsequent calls to SQGetData2 will be switched over to the new mode. The user can switch back to SYNC mode at any point.

liResult = SQConfig(

ASYNC_NO_EVENT,

0,

75,

&liRetVal1,

&liRetVal2);

In many cases the synchronous get data will be sufficient. However, in some cases the user’s application may not want to wait for the data to come back due to other processing demands. For these cases there are some additional data modes available. These other modes may be slightly more complex,, so that the user is suggested to start with the synchronous get data operation first and then move to the higher-performance modes if necessary. The asynchronous modes are oriented toward applications that use timers and/or multi-threaded designs to more efficiently acquire the data from the DLL’s built-in data buffer.

MODE_ASYNC_NO_EVENT mode:

If running in ASYNC_NO_EVENT mode (2), a call to this routine will return the next sensor reading or an error condition. Along with the floating point values of the quantities that the sensor measures (in this case pitch and roll) this routine returns the packet count, an error code if there was an error during this read operation, and the latched error condition. There must be a valid open connection to a specific serial COM port on the user’s computer. Note that since this operation is synchronous that the function will not return until the data is actually available.

The asynchronous get data (no event) routine differs from the synchronous get data operation in that a call to asynchronous SQGetData2 starts an asynchronous read mode where the DLL acquires data from the sensor firmware as fast as possible based on the standard Microsoft Win32 multithreaded concurrent I/O protocol, using an event-driven mechanism. Essentially when the SignalQuest hardware device transmits each data packet (which occurs at precise 25 millisecond intervals for the HP model sensors), an interrupt is generated by the UART hardware (port on back of PC) which signals to the DLL that a new data packet is ready. The DLL immediately processes this new data in its read thread, copying the results into a single-point buffer. Each packet is assigned a count by the DLL to give the caller a way of monitoring how well their calls are synchronized with the arrival of new data. When the user calls SQGetData2 in asynchronous mode it reads directly from the buffer and returns immediately. This may or may not contain new data depending on the rate at which the SQGetData2 function is called from the user’s application.

MODE_ASYNC_EVENT mode:

When calling SQGetData2 in ASYNC_NO_EVENT mode (2) the user reads directly from the DLL’s internal buffer and hence does not have to wait for the packet to be read and decoded. Because the speed of the computer may vary from moment to moment, the packet count is included to determine if the user’s application is operating too quickly (will read duplicate packets) or too slowly (dropped packets). In order to signal to the calling program the optimal time to read the buffer, an additional mode ASYNC_EVENT mode (3) is available. This mode uses a Windows kernel signal event that can be “waited on” with a call to the Win32 SDK command WaitForSingleObject (see the Microsoft MSDN SDK documentation for this function).

HANDLE hDataReadyEvent;

liResult = SQConfig(

ASYNC_EVENT,

0,

75,

&hDataReadyEvent,

&liRetVal2);

The asynchronous event-driven mode differs from the asynchronous non-event-driven mode by the use of the event handle. The user must use the first return value to receive the handle to the event. This is passed as a LONG but will need to be converted to the HANDLE type if working in VC++, prior to sending it to WaitForSingleObject. For other compilers check your documentation on how to access this SDK function via DLL Import or other means. This command puts the application in a halt mode until the event is fired, after which the user can call SQGetData2 to read the new packet, and then wait again until the next packet is ready. In a sense this is a synchronous approach, however, it is not truly synchronous since it is reading from the single-point buffer, and it is possible that due to CPU load and application processing the call to get data may be called too late, and suffer from dropped packets.

LONG SQGetData2(

LONG liCOMPort,

FLOAT * pfValue1,

FLOAT * pfValue2,

LONG * pliPacketCount,

LONG * pliPacketError,

LONG * pliLatchedError);

The user must specify:

liCOMPort

The COM port to connect to.

Example: to connect to COM1 send the integer 1

pfValue1

This is a pointer to a floating point variable that will receive the value of get data if successful. The first parameter for the inclinometer is pitch in degrees.

pfValue2

This is a pointer to a floating point variable that will receive the value of get data if successful. The first parameter for the inclinometer is roll in degrees.

pliPacketCount

This is a pointer to a long integer that will receive the value of the DLL’s internal packet counter for this packet.

pliPacketError

This is a pointer to a long integer that will receive the value of the error condition for the packet. If no error, this value will be zero (0). See also the error code summary at the end of the guide.

pliLatchedError

This is a pointer to a long integer that will receive the value of the latched error condition as described above (see also SQClearLatchedError).

Example use:

LONG liResult = 0;

LONG liCOMPort = 3;

FLOAT fPitch = 0.0;

FLOAT fRoll = 0.0;

LONG liPacketCount = 0;

LONG liCurrentError = 0;

LONG liLatchedError = 0;

liResult = SQGetData2(

liCOMPort,

&fPitch,

&fRoll,

&liPacketCount,

&liCurrentError,

&liLatchedError);

SQClosePort

This function closes an open connection to a specific serial COM port.

LONG SQClosePort(

LONG liCOMPort);

The user must specify:

liCOMPort

The COM port to connect to.

Example: to connect to COM1 send the integer 1.

Example use:

LONG liCOMPort;

// Close COM3

liCOMPort = 3;

// Close COM port

liResult = SQClosePort(

liCOMPort);

SQResetDevice

This function resets the CPU on the SignalQuest sensor device. There must be a valid open connection to a specific serial COM port on the user’s computer.

LONG SQResetDevice(

LONG liCOMPort);

The user must specify:

liCOMPort

The COM port to connect to.

Example: to connect to COM1 send the integer 1.

Example use:

LONG liCOMPort;

liCOMPort = 3;

// Reset COM port

liResult = SQResetDevice(

liCOMPort);

SQGetErrorString

This function converts a SignalQuest error code to an ASCII string containing a description of the error.

LONG SQGetErrorString(

LONG liErrorCode,

LONG liBuffSize,

LPTSTR lptszBuffer);

The user must specify:

liErrorCode

The error code returned by the DLL function call.

Example: send back the error code returned by a failed reset device.

Example use:

LONG liCOMPort;

LONG liErrorCode;

char szBuffer[80];

liCOMPort = 3;

liErrorCode = SQResetDevice(liCOMPort);

if(liErrorCode != 0)

{

SQGetErrorString(liErrorCode, 80, szBuffer);

}

SQClearLatchedError

This function resets a latched error condition. A latched error condition is a flag in the DLL that is set high when an error occurs during any GetData2 call. The user may need to know how to handle a sensor failure condition and might consider implementing a failsafe routine that would react to a latched error and would reset the latched error flag by calling this function when they are confident that the software application and/or system process control module is still performing within an acceptable range. There must be a valid open connection to a specific serial COM port on the user’s computer.

LONG SQClearLatchedError(

LONG liCOMPort);

The user must specify:

liCOMPort

The COM port to connect to.

Example: to connect to COM1 send the integer 1.

Example use:

LONG liCOMPort;

liCOMPort = 3;

// Clear latched error condition

liResult = SQClearLatchedError(

liCOMPort);

SQReadCTS

This function gets the current state of the CTS (Clear To Send) Digital I/O Input line. This will be high or low. There must be a valid open connection to a specific serial COM port on the user’s computer. If the CTS event is utilized the user can wait using WaitForSingleObject for this line to go on.

LONG SQReadCTS(

LONG liCOMPort,

LONG * pliCTS);

The user must specify:

liCOMPort

The COM port to connect to.

Example: to connect to COM1 send the integer 1.

pliCTS

A pointer to the variable set up to receive the value of CTS.

Example use:

LONG liCOMPort = 3;

LONG liCTS;

LONG liDsrEvent, liCtsEvent;

SQConfig(MODE_DIG_IO_ON, 0, 75, &liDsrEvent, &liCtsEvent);

::WaitForSingleObject(liCtsEvent, INFINITE);

liResult = SQReadCTS(

liCOMPort,

&liCTS);

SQConfig(MODE_DIG_IO_OFF, 0, 75, &liDsrEvent, &liCtsEvent);

SQReadDSR

This function gets the current state of the DSR (Data Send Ready) Digital I/O Input line. This will be high or low. There must be a valid open connection to a specific serial COM port on the user’s computer. If the DSR event is utilized the user can wait using WaitForSingleObject for this line to go on.

LONG SQReadDSR(

LONG liCOMPort,

LONG * pliDSR);

The user must specify:

liCOMPort

The COM port to connect to.

Example: to connect to COM1 send the integer 1.

pliDSR

A pointer to the variable set up to receive the value of the DSR status.

Example use:

LONG liCOMPort = 3;

LONG liDSR;

LONG liDsrEvent, liCtsEvent;

SQConfig(MODE_DIG_IO_ON, 0, 75, &liDsrEvent, &liCtsEvent);

::WaitForSingleObject(liDsrEvent, INFINITE);

liResult = SQReadDSR(

liCOMPort,

&liDSR);

SQConfig(MODE_DIG_IO_OFF, 0, 75, &liDsrEvent, &liCtsEvent);

SQWriteRTS

This function sets the current state of the RTS (Ready To Send) Digital I/O Output line. This will be high or low. There must be a valid open connection to a specific serial COM port on the user’s computer.

LONG SQWriteRTS(

LONG liCOMPort,

LONG liRTS);

The user must specify:

liCOMPort

The COM port to connect to.

Example: to connect to COM1 send the integer 1.

liRTS

The new value of the RTS status.

Example use:

LONG liCOMPort = 3;

LONG liRTS = 1;

liResult = SQWriteRTS(

liCOMPort,

liRTS);

SQWriteDTR

This function sets the current state of the DTR (Data Transmit Ready) Digital I/O Output line. This will be high or low. There must be a valid open connection to a specific serial COM port on the user’s computer.

LONG SQWriteDTR(

LONG liCOMPort,

LONG liDTR);

The user must specify:

liCOMPort

The COM port to connect to.

Example: to connect to COM1 send the integer 1.

liDTR

The new value of the DTR status.

Example use:

LONG liCOMPort = 3;

LONG liDTR = 0;

liResult = SQWriteDTR(

liCOMPort,

liDTR);

Known Issues

Dropped packets

Packets can be dropped if the effective rate (based on how fast the code is actually running due to processing loads not controllable by the user’s serial COM application) at which the user calls SQGetData2 is not timed tightly enough with the device’s built-in 25 ms oscillator. This is a result of the complexity of modern Graphical User Interface based Operating Systems such as Microsoft Windows XP.

Change History

V1.0

1. Foundation Win32 RS-232 DLL

2. OpenPort

3. ClosePort

4. SyncGetData

V1.0(V1.1

1. Foundation multi-threaded MFC RS-232 DLL

2. Same functionality as V1.0

V1.1(V1.2

1. Packet counter

2. Single-point buffer

3. Asynchronous get data

4. Eliminated CPU load problems

V1.2(V1.3

1. Added SQFindNextDevice function

2. COM passed parameter change from string to int (LONG)

3. New Reset command SQResetDeviceAfterAsyncError to address problem of dropped TX/RX line in async get data mode

4. Cleared up logic issues in various degenerate test scenarios (i.e. calling get data when a port is not yet open)

V1.3(V1.4

1. New asynchronous event-driven get data mode added (MODE_ASYNC_EVENT).

2. Eliminated SQResetDeviceAfterAsyncError by making ResetDevice work in all cases.

3. Eliminated need for separate SQGetData2 calls.

4. Removed unnecessary parameters from SQOpenPort and SQFindNextDevice.
5. SQConfig function added to change data acquisition modes and pre-load DLL.

6. Object destruction delay problems (program crashing if SQClosePort is called too quickly after SQOpenPort or SQGetData2, or SQGetData2 called while SQClosePort is deleting the object). Noticeable delays in certain functions are imposed as a robust preventative measure to avoid COM port timing problems.

7. Sample demo program has better display and more features.

8. Re-named SQFindNextDevice to SQFindFirstDevice.

9. New function SQGetErrorString returns a string message description when passed an SQ serial API error code.

V1.4(V1.5

1. Digital I/O lines. RTS, DTR, CTS, DSR lines, typically used as modem handshaking lines, were made available as direct digital input/output lines. DSR and CTS are input lines, and RTS and DTR are output. Four new DLL functions were made available to read and write to and from these data lines.

V1.71

1. Eliminated the thread race when closing ports. Delays on opening and closing ports were removed.

2. The SQWriteDTR command was fixed so that it sets the DTR output.

3. The VC++ test program has a repetition count for the linear test. Windows are updated during “linear” tests.

Error Codes

From SQRS232Errors.h

// No error

#define ERROR_NO_ERROR

0

// General DLL errors

#define ERROR_OPEN_PORT_COM_STRING

-101

#define ERROR_OPEN_PORT_OPEN_PORT

-102

#define ERROR_CLOSE_PORT_COM_STRING

-103

#define ERROR_CLOSE_PORT_PORT_NOT_OPEN

-104

#define ERROR_GET_DATA_WAIT_OBJECT

-105

#define ERROR_GET_DATA_COM_STRING

-106

#define ERROR_GET_DATA_PORT_NOT_OPEN

-107

#define ERROR_GET_DATA_PORT_CLOSING

-108

#define ERROR_GET_DATA_PORT_OPENING

-109

#define ERROR_READ_PACKET_CHECKSUM

-110

#define ERROR_READ_PACKET_POST_MESSAGE

-111

#define ERROR_INVALID_USER_WINDOW_HANDLE

-112

#define ERROR_RESET_DEVICE_TIMEOUT

-113

#define ERROR_RESET_DEVICE_PORT_NOT_OPEN

-114

#define ERROR_RESET_DEVICE_COM_STRING

-115

#define ERROR_CLEAR_LATCHED_PORT_NOT_OPEN

-116

#define ERROR_FIND_DEVICE_NOT_FOUND

-117

#define ERROR_FIND_DEVICE_OPEN_PORT

-118

#define ERROR_CONFIG_PORT_NOT_OPEN

-119

#define ERROR_DLL_NOT_INITIALIZED

-120

#define ERROR_GET_CTS_STATUS_COM_STRING

-121

#define ERROR_GET_CTS_STATUS_PORT_NOT_OPEN

-122

#define ERROR_GET_DSR_STATUS_COM_STRING

-123

#define ERROR_GET_DSR_STATUS_PORT_NOT_OPEN

-124

#define ERROR_SET_DTR_STATUS_COM_STRING

-125

#define ERROR_SET_DTR_STATUS_PORT_NOT_OPEN

-126

#define ERROR_SET_RTS_STATUS_COM_STRING

-127

#define ERROR_SET_RTS_STATUS_PORT_NOT_OPEN

-128

// Success

#define ERROR_RS232_SUCCESS

0

// RS-232 warning error messages

#define ERROR_RS232_WARNING

-201

#define ERROR_RS232_FUNCTION_NOT_SUPPORTED

-202

#define ERROR_RS232_TIMEOUT

-203

#define ERROR_RS232_ILLEGAL_BAUD_RATE

-204

#define ERROR_RS232_ILLEGAL_PARITY_SETTING

-205

#define ERROR_RS232_ILLEGAL_WORD_LENGTH

-206

#define ERROR_RS232_ILLEGAL_STOP_BITS

-207

#define ERROR_RS232_ILLEGAL_LINE_NUMBER

-208

#define ERROR_RS232_NO_MODEM_RESPONSE

-209

#define ERROR_RS232_NO_TERMINATOR

-210

#define ERROR_RS232_DTR_NOT_SUPPORTED

-211

#define ERROR_RS232_RTS_NOT_SUPPORTED

-212

#define ERROR_RS232_RTS_CTS_NOT_SUPPORTED

-213

#define ERROR_RS232_DTR_DSR_NOT_SUPPORTED

-214

#define ERROR_RS232_XON_XOFF_NOT_SUPPORTED

-215

#define ERROR_RS232_NEXT_FREE_WARNING

-216

// Fatal error messages

#define ERROR_RS232_ERROR

-301

#define ERROR_RS232_IRQ_IN_USE

-302

#define ERROR_RS232_PORT_NOT_FOUND

-303

#define ERROR_RS232_PORT_IN_USE

-304

#define ERROR_RS232_ILLEGAL_IRQ

-305

#define ERROR_RS232_MEMORY_ALLOCATION_ERROR

-306

#define ERROR_RS232_NEXT_FREE_ERROR

-307

	Last Updated: 11/19/2004
TestSQIncl171.doc

	© SignalQuest Inc.

1999 - 2004
	1 Mechanic St.

Lebanon, NH, 03766 USA
	Tel: 603-448-6266

Fax: 603-619-6330
	www.signalquest.com
info@signalquest.com

Page 27 of 29

